Skip to content

Instantly share code, notes, and snippets.

@jkommera
Last active July 1, 2022 15:53
Show Gist options
  • Save jkommera/6765657ad290381a6361500fb1738b10 to your computer and use it in GitHub Desktop.
Save jkommera/6765657ad290381a6361500fb1738b10 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"hide_input": false
},
"outputs": [],
"source": [
"import psycopg2\n",
"import pandas\n",
"import pandas.io.sql as psql\n",
"import configparser\n",
"import os"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import plotly.express as px"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"def fetchDBCredentials(dbcred_file):\n",
" conf = configparser.ConfigParser()\n",
" conf.read(dbcred_file)\n",
" host = conf.get('database_creds','host')\n",
" port = conf.get('database_creds','port')\n",
" user = conf.get('database_creds','user')\n",
" database = conf.get('database_creds','database')\n",
" password = conf.get('database_creds','password')\n",
" conn_str = \"\"\"dbname='{database}' user='{user}' host='{host}' port='{port}' password='{password}'\"\"\".format(\n",
" database=database,\n",
" host=host,\n",
" port=port,\n",
" user=user,\n",
" password=password)\n",
" return conn_str"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"gpdb_cred_file = os.path.join(os.path.expanduser('C:\\\\Users\\\\jkommera\\\\'), '.dslab_user.cred.txt')\n",
"conn_gpdb = psycopg2.connect(fetchDBCredentials(gpdb_cred_file))"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"df=psql.read_sql(\"\"\"SELECT * FROM jkommera.online_persistence_for_charts_details;\"\"\",conn_gpdb)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"iso_code_data=pd.read_csv('countries_codes_and_coordinates.csv') # country iso 3 codes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Student persistence over terms enrolled"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"terms_temp_df=df.copy()\n",
"terms_temp_df=terms_temp_df[terms_temp_df['num_sems_enrolled'].notna()]\n",
"terms_temp_df.loc[terms_temp_df['num_sems_enrolled'] >=12, 'num_sems_enrolled'] = '>12'\n",
"terms_temp_df['num_sems_enrolled']=terms_temp_df['num_sems_enrolled'].astype(str) ## not working"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"terms_enrolled_df = terms_temp_df.groupby('num_sems_enrolled')['persistence_term_1_desc'].value_counts(normalize=True)\n",
"terms_enrolled_df = terms_enrolled_df.mul(100).round(2).rename('Percentage').reset_index()\n",
"terms_enrolled_df.columns=['Terms Enrolled','next_term_enrollement','percentage']"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
" <script type=\"text/javascript\">\n",
" window.PlotlyConfig = {MathJaxConfig: 'local'};\n",
" if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}\n",
" if (typeof require !== 'undefined') {\n",
" require.undef(\"plotly\");\n",
" define('plotly', function(require, exports, module) {\n",
" /**\n",
"* plotly.js v1.52.2\n",
"* Copyright 2012-2020, Plotly, Inc.\n",
"* All rights reserved.\n",
"* Licensed under the MIT license\n",
"*/\n",
Sign in to join this conversation on GitHub.